翻訳と辞書 |
Pseudo-Riemannian manifold : ウィキペディア英語版 | Pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold〔, p. 172.〕〔, p. 208〕 (also called a semi-Riemannian manifold) is a generalization of a Riemannian manifold in which the metric tensor need not be positive-definite. Instead a weaker condition of nondegeneracy is imposed on the metric tensor. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean space described by an isotropic quadratic form. A special case of great importance to general relativity is a Lorentzian manifold, in which one dimension has a sign opposite to that of the rest. This allows tangent vectors to be classified into timelike, null, and spacelike. Spacetime can be modeled as a 4-dimensional Lorentzian manifold. == Introduction ==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pseudo-Riemannian manifold」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|